

Enyne Annulation

International Edition: DOI: 10.1002/anie.201507946 German Edition: DOI: 10.1002/ange.201507946

Alkene-Directed N-Attack Chemoselectivity in the Gold-Catalyzed [2+2+1]-Annulations of 1,6-Enynes with N-Hydroxyanilines

Deepak B. Huple, Bhanudas D. Mokar, and Rai-Shung Liu*

Abstract: Kinetically unstable nitrones are generated from gold-catalyzed reactions of 1,6-enynes with N-hydroxyanilines, and subsequently trapped by tethered alkenes to furnish [2+2+1]-annulations. Our experimental data reveal that such nitrones arise from atypical N-attack chemoselectivity that is triggered by tethered alkenes to facilitate the key protodeauration reaction.

Nitrones are versatile precursors to access N,O-containing molecules through their stereoselective [3+2]-cycloadditions with alkenes; these reactive species are commonly generated in situ from the intermolecular reactions of N-hydroxyamines and aldehydes [Eq. (1)]. [1-2] Unfortunately, nitrones (I')

R¹
$$\stackrel{\bullet}{N}$$
 $\stackrel{\bullet}{N}$ infeasible $\stackrel{\bullet}{R}$ $\stackrel{\bullet}{N}$ $\stackrel{\bullet}{N}$ $\stackrel{\bullet}{R}$ $\stackrel{\bullet}{R}$

cannot be generated from the intermolecular reactions of ketones $(R^2, R^3 = alkyl \text{ or aryl})^{[3-4]}$ with N-hydroxyamines, rendering their [3+2]-cycloadditions infeasible. Gold-catalyzed intramolecular reactions of N-hydroxyamines with alkynes have been intensively studied.^[5] Zhang and coworkers reported gold-catalyzed intermolecular reactions of N-hydroxyamines with alkyl-substituted terminal alkynes $(R = (CH_2)_2 - FG)$ to afford indole products; [6] the key step involves an O-attack of N-hydroxyanilines at gold π -alkynes [Eq. (2)]. Herein, we report gold-catalyzed [2+2+1]-annulations of N-hydroxyanilines with diverse 1,6-enynes to give transient nitrones (III) that can be trapped efficiently by tethered alkenes to furnish cycloadditions [Eq. (3)]. The success of such cycloadditions is remarkable because such nitrones arise from a distinct N-attack of N-hydroxyamines at π -alkynes, as opposed to the O-attack mode reported by Zhang and co-workers [Eq. (2)]. [6] Our mechanistic analysis indicates that this chemoselective N-attack is triggered by tethered alkenes to facilitate the protodeauration, so to alter the typical O-attack chemoselectivity.

Table 1 shows the annulations of 1,6-envne 1a with Nhydroxyaniline 2a using various gold catalysts (5 mol%) in

Table 1: Reactions over various gold catalysts.

Entry	Catalyst ^[b] (mol%)	Solvent	t [l-1	Compound yields [%] ^[c]			
	(moi %)		[h]	1 a	3 a	4	5
1	LAuCl/AgSbF ₆ (5)	DCM	7	_	78	12	5
2	LAuCl/AgOTf (5)	DCM	7	_	76	14	6
3	LAuCl/AgNTf ₂ (5)	DCM	5	_	80	_	trace
4	PPh ₃ AuCl/AgNTf ₂ (5)	DCM	20	50	33	7	25
5	L'AuCl/AgNTf ₂ (5)	DCM	20	55	15	4	20
6	IPrAuCl/AgNTf ₂ (5)	DCM	20	10	70	8	7
7	AgNTf ₂ (10)	DCM	30	90	_	5	12
8	LAuCl/AgNTf ₂ (5)	DCE	5	_	71	10	4
9	LAuCl/AgNTf ₂ (5)	toluene	4	_	78	5	trace
10	LAuCl/AgNTf ₂ (5)	1,4-dioxane	6	_	70	10	trace

[a] **1a** (0.19 M, 1 equiv), **2a** (1.1 equiv), [b] $L = P(tBu)_2(o-biphenyl)$, IPr = 1,3-bis (diisopropylphenyl) imidazol-2-ylidene. L' = tris (2,4-di-tertbutylphenyl) phosphite. [c] Product yields are given after purification from a silica column.

dichloromethane (25°C). Notably, the competitive cycloisomerizations of 1,6-enynes were completely suppressed, whereas side-product 4 and 1,2-diphenyldiazene oxide 5 were present in minor proportions (<20%). Indole species 4 arose from gold-catalyzed reactions of N-hydroxyanilines with terminal alkynes [Eq. (2)]. Among the tested catalysts (entries 1-6), electron-rich and bulky LAuCl/AgX (L=P- $(tBu)_2(o\text{-biphenyl}); X = SbF_6, OTf, NTf_2) and IPrAuCl/$ AgNTf₂ (IPr = 1,3-bis(diisopropylphenyl)-imidazol-2-ylidene) were efficient enough to give the desired annulation product 3a in high yields (70-80%), with LAuCl/AgNTf₂ being the most productive (entry 3). In contrast, PPh₃AuCl/ AgNTf₂ and highly acidic L'AuCl/AgNTf₂ (L' = tris(2,4-ditert-butyl)phosphite) were much less reactive, leading to

^[*] Dr. D. B. Huple, B. D. Mokar, Prof. Dr. R.-S. Liu Department of Chemistry, National Tsing-Hua University Hsinchu, 30013 (Taiwan, ROC) E-mail: rsliu@mx.nthu.edu.tw

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201507946.

incomplete conversions of about 45-50% (entries 4,5). Electron-rich gold catalysts facilitate protodeauration, thus increasing the reaction efficiency. AgNTf2 alone was an ineffective catalyst even at 10 mol % loading. The product yields of compound 3a varied with solvents, with a yield of 71% in dichloroethane (DCE), 78% in toluene, and 70% in 1,4-dioxane (entries 8–10). In entries 1–10, only one diastereomeric form of 3a was formed with the two methine protons trans to each other, according to the ¹H NOE effect. This stereochemistry is in accordance with starting transconfigured 1,6-enyne 1a. The molecular framework of compound 3a was confirmed by X-ray diffraction of its NTsbridged analogue **3c** (Table 2, entry 2).^[7]

Table 2 assesses the scope of the annulation reactions with various acyclic O- and N-linked 1,6-enynes 1b-1e bearing

Table 2: Scope of 1,6-enynes with N-hydroxyanilines.[a]

1 + PhNHOH	5 mol % LAuCl/ AgNTf ₂ 3 +	$Z \xrightarrow{R^2} R^1$ Ts	TsN O 1i'
Entry	Substrates	t (h)/°C	Yields (%) ^[b]
	Z R		Z N Ph
1	$Z = NTs, R = H (1b)^{[c]}$	12/25	3b (72), 1b-H (13)
2	Z = NTs, $R = Ph$ (1c)	6/25	3c (74), 4c (17)
3	Z = O, $R = 2$ -furyl (1d)	2.5/25	3d (92)
4	Z = O, $R = 3$ -thienyl (1e)	2.5/25	3e (88)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		R ³ H Ph
5	$Z = O, R^1 = H, R^2 = Ph$ $R^3 = Ph (1f)$	12/55	3f (79)
6	$Z = O, R^{i} = R^{2} = Me$ $R^{3} = Ph (1g)^{[c]}$	12/25	3g (61)
7	$Z = O, R^1 = R^2 = Me$ $R^3 = H (1h)$	12/25	3h (50)
8	$Z = NTs, R^{1} = R^{2} = Me$ $R^{3} = H (1i)^{[d]}$	36/25	3i (57); 1i' (5)

[a] 1a (0.19 M, 1 equiv), 2a (1.1 equiv), $L = P(tBu)_2(o-biphenyl)$, [b] Product yields are given after purification from a silica column. [c] 2a (2.0 equiv) and [d] 2a (3.0 equiv).

various mono- and 1,2-disubstituted alkenes, yielding bicyclic products 3b-3e in 72-92 % yields (entries 1-4), together with hydration product 1b-H and indole species 4c in a minor proportion (13–17%). X-ray diffraction of the 3c cycloadduct confirmed the molecular structure with the nitrogen linked to the CMe carbon and the oxygen linked to the CPh carbon.^[7] We prepared C(3)-phenyl substituted 1,6-enynes **1 f** and **1 g** to test the stereocontrol of the reaction. Gratifyingly, their resulting products 3f and 3g were obtained with single diastereomers (d.r. > 30:1) in 79% and 61% yields, respectively. ¹H NOE of compound **3 f** was performed to elucidate its stereochemistry. For 1,6-envnes 1h and 1i bearing a trisubstituted alkene (entries 7,8), their corresponding reactions delivered the desired bicyclic compounds 3h and 3i in moderate yields (50–57%), whereas cycloisomerization product 1i' was produced in 5% yield (entry 8). For compound **3h**, the *N*-phenyl protons have a ¹H NOE on the single methyl but no effect on the two gem-methyl groups. In Table 2, high product yields (>70%) could be easily obtained if 1,6-enynes did not bear electron-rich trisubstituted alkenes.

We examined the scope of N-hydroxyamines to understand their effects on reaction chemistry (Table 3). In

Table 3: Scope of N-hydroxyamines.

Entry	N-hydroxyamines	t (h)	Yields [%] ^[c]
1	$R = 4-Me-C_6H_4 (2b)^{[d]}$	16	6b (61)
2	$R = 4-F-C_6H_4$ (2c)	4	6c (81)
3	$R = 4-CI-C_6H_4$ (2d)	5	6d (80)
4	$R = 4-Br-C_6H_4$ (2 e)	4.5	6e (82)
5	$R = 4 - CO_2 Et - C_6 H_4$ (2 f)	6	6 f (70)
6	$R = Isopropyl (2g)^{[d]}$	24	6g (39), 1a (30)

[a] 1a (0.19 m, 1 equiv), 2a (1.1 equiv). [b] L = P(tBu)2(o-biphenyl). [c] Product yields are given after purification from a silica column. [d] 2b and 2g (2.2 equiv).

entries 1 and 6, less efficient amines 2b and 2g were used with two-fold proportions whereas other amines were used with 1.1 equivalents. The reaction duration and product yields reveal superior reactivity for less basic N-hydroxyanilines 2c-2 f to afford desired annulation products 6 c-6 f in satisfactory yields (70-81%) at brief periods (4-6 h). In contrast, highly nucleophilic amines 2b and 2g gave desired products 6b and 6g in relatively low yields, 61% and 39%, over protracted periods (16-24 h). These data indicate that less basic Nhydroxyamines 2c-2f enable satisfactory products yields (>70%), presumably because of their highly efficient protodeauration reactions (see Scheme 1).

Alkene- and benzene-bridged 1,6-enynes 7 were also investigated, with a goal of constructing useful carbocyclic frameworks (Table 4). In entries 1,2, 1,6-enynes 7a and 7b bearing a trans-1,2-disubstituted alkene ($R^2 = H$, $R^3 = Ph$, CN) gave expected products 8a and 8b in good yields (78– 92%), whereas an electron-rich alkene, such as 1,6-enyne 7c $(R^1 = R^2 = Me)$, delivered compound 8c in only 55% yield (entry 3). Alkoxy-derived 1,6-enynes 7d and 7e yielded 8d and **8e**, **8e'** (entries 4,5).^[7] The enhanced yields (78–85%) of resulting 8d and 8e relative to that of their unsubstituted analogue 8a reflected the Ingold-Thorpe effect.^[8] X-ray diffraction of annulations were applicable to cycloalkenebridged 1,6-enynes 7f and 7g, yielding the expected products 8 f and 8 g in 54 % and 89 % yields, respectively. The data from Tables 2 and 4 clearly indicate that 1,6-enynes 1h, 1i, 7c, and 7 f bearing electron-rich alkenes are less efficient substrates; this reaction trend matches well with the well-known cycloadditions between nitrones and alkenes.[1]

Table 4: Reactions with benzene- or alkene-bridged 1,6-enynes.

Entry	1,6-enynes ^[a]	t (h)	Yields ^[b]
	R^1 R^2 R^3		R ¹ H R ³ N-O Ph
1	$R^1 = H, R^2 = H, R^3 = Ph (7a)^{[c]}$	12	8a (82)
2	$R^1 = H, R^2 = H, R^3 = CN (7b)$	8	8b (92)
3	$R^1 = H, R^2 = R^3 = Me$ (7c)	36	8c (55)
4	$R^1 = OTBS, R^2 = R^3 = Me (7d)$	10	8 d (78)
5	$R^1 = OMe, R^2 = R^3 = Me$ (7 e)	10	8e (85), 8e' (10)
	RR		H R N-O Ph
6	$R = Me \ (7 \ f)^{[c]}$	16	8 f (54)
7	R = H (7g)	2.5	8g (89)

[a] 1a (0.19 M, 1 equiv), 2a (1.1 equiv), $L = P(tBu)_2(o$ -biphenyl). [b] Product yields are given after purification from a silica column. [c] 2a (2.0 equiv) for entries 3–5 and 2a (3.0 equiv) for entries 1 and 6-7.

To examine the reaction stereospecificity, Z-configured 1,6-enyne 1a' was found to yield two diastereomeric products 3a' and 3a in 68% and 6% yields respectively [Eq. (4)].

Particularly notable is the case of CN-derived 1,6-enyne 7b', giving cycloadduct 8b' in excellent yield [90%, Eq. (4)], of which the NMR data are distinct from those from its E-configured analogue 7b. Accordingly, the annulations generated products 3a' and 8b' bearing the same configurations as those of initial 1,6-enynes 1a' and 7b'.

Equation (5) shows the application to the stereoselective synthesis of 1,3-aminoalcohols. Treatment of compound **3a** with Pd/C (10 mol %) in MeOH gave 1,3-aminoalcohol **9a** in 86 % yield. We performed this reductive N-O cleavage on its epimer **3a'** to deliver distinct 1,3-aminoalcohol **9a'** in 84 % yield.

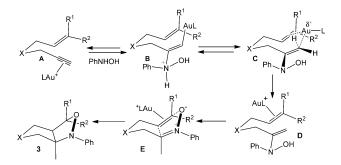
Gold catalysts can implement the cycloisomerizations of 1,n-enynes (n = 5, 6) through gold carbene intermediates; [11] these carbenes implement the cycloadditions of 1,n-enynes with carbonyl, [9] nitrosoarenes, [10a] or nitrones. [10b] With CN-derived 1,6-enynes **7b** and **7b'** as efficient substrates, the intermediacy of gold carbenes can be excluded because no cycloisomerization occurs with the gold catalyst. Treatment of 1,6-enyne **1b** with N-hydroxyaniline (1.1 equiv) and external H_2O (2 equiv) in DCM (25 °C, 6 h) yielded annulation product **3b** and ketone **1b-H** in 61% and 27% yields respectively [Eq. (6)] whereas its anhydrous condition gave

3b and **1b-H** in 72% and 13% yields respectively (Table 2, entry 1). Notably in Equation (7), the gold-catalyzed reaction of 1,6-enyne **1b** with H₂O (2 equiv) gave cycloisomerization product **1b'** in 82% yield together with ketone **1b-H** in only 8%; gold carbene IV generated in this cycloisomerization^[12] is inaccessible to the desired **3b**. A significant portion of ketone **1b-H** in Eq. 6 seems to arise from the hydration of unstable nitrone intermediate IV. As we expected, this nitrone could not be generated from the reaction of ketone **1b-H** and *N*-hydroxyaniline in dry DCM [Eq. (8)].

To acquire insight into the N- versus O-attack chemoselectivity, we examined gold-catalyzed reactions of various propargyl ethers with N-hydroxyaniline (Table 5). We observed the O-attack chemoselectivity occurring with benzyl propargyl ether 10a and its benzoate derivative 10b, yielding indole compounds 11a and 11b in 73% and 53% yields, respectively. Hydration compound 11b-H was formed in 41 % yield in the latter. We tested the reaction on 1,7-enyne 10c to yield indole 11c and α -amino ketone 11c' in comparable proportions (36-41%); both compounds arose from the *O*-chemoselectivity.^[13] For model 1,6-enyne **1j**, the gold-catalyzed reaction yielded desired annulation product 3j in 88% yield. Among these propargyl ethers 10a-10c and 1j, only 1,6-enyne 1j proceeded exclusively with N-chemoselectivity without formation of indole products. Finally, phenylacetylene 10e delivered acetophenone 10e-H exclusively, presumably from the hydrolysis of unstable nitrone intermediates (entry 5).

The N- and O-attack chemoselectivity is distinct between aryl- and alkyl-substituted alkynes (Table 4). As shown in Scheme 1, the N-attack of N-hydroxyaniline on π -alkyne is expected to be more rapid than the corresponding O-attack

Table 5: Alkene-directed chemoselectivity.


Entry	1,6-enynes ^[a]	t (h)	Products (% Yield) ^[b]
1	Ph 10a	6	Ph O H N N N N N N N N N N N N N N N N N N
2	Ph 0 =	6	Ph O H Ph O O O O O O O O O O O O O O O O O O
3	10b = 10c	8	11c (41%) 11b (35%) 11b (41%) 11c (41%) 11c (36%)
4	=/_O_=	8	O 3j (88%)
5	Ph— —— 10e	4	O Ph 10e-H (98%)

[a] 1a (0.22 $\,\mathrm{M}$ in DCM), 5 mol% AuCl(P(tBu) $_2$ (o-biphenyl))/5 mol% AgNTf $_2$. For 2a, 2.0 equiv for entries 1–5. [b] Product yields are given after purification from a silica column.

Scheme 1. N- versus O-attack chemoselectivity.

under neutral conditions because amines are better than alcohols as nucleophiles $(k_1 > k_2)$;^[14] both paths are likely to be reversible. As the Brønsted acidity of intermediates A and A' differs with A' > A; we propose that the protodeauration process $(A' \rightarrow B')$ can occur with all R substituents, whereas the N-attack process $(\mathbf{A} \rightarrow \mathbf{B})$ is only applicable to aryl substituents (R = aryl) that have strong ammonium acidity to achieve protodeauration.^[15] Acidic N-hydroxyanilines (Table 3) are also favorable for this N-attack process ($\mathbf{A} \rightarrow$ B) because of their increased ammonium acidity. In species A with R = Ar, this ammonium N-H proton is very close to the Au-C=C bond to facilitate its migration to form a stable benzylic cation. In the case of alkyl-substituted alkynes (R = alkyl), their corresponding states A are less acidic but their initial rates are fast; O- and N-attack selectivity are thus competitive.

Preference of acyclic 1,6-enynes 1 toward the *N*-attack chemoselectivity is particularly notable because other propargyl ethers 10a–10c afford indole products through the *O*-attack selectivity. The alkene group of 1,6-enynes 1 completely alter the reaction chemoselectivity according to the following rationales (Scheme 2). An initial *N*-attack of *N*-hydroxyani-

Scheme 2. A postulated mechanism.

line at π -alkyne **A** is expected to yield alkenylgold species **B**. To achieve protodeauration, the alkenylgold moiety of species **B** undergoes protonation at the =CAu carbon, forming species **C** according to a recent theoretical model. ^[14a] We envisage that the loss of energy in the cleavage of the σ -Au-C bond in species **C** is compensated by an attack of the olefin at Au to generate species **D**, ultimately giving nitrone species **E** after a facile tautomerization. For species **E**, the nitrone moiety has a high-lying HOMO whereas Au^I- π -alkene has a low-lying LUMO, thus accelerating the dipolar [3+2]-cycloadditions with high stereospecificity.

Kinetically unstable trisubstituted nitrones are generated from the gold-catalyzed reactions of 1,6-enynes with N-hydroxyanilines. Such transient species are efficiently trapped with tethered alkenes to achieve stereospecific cycloadditions. Notably, these annulations involve an atypical N-attack of hydoxyamines at gold- π -alkynes. Our data reveal that most propargyl ethers show the O-attack selectivity, whereas allyl propargyl ether proceeds exclusively through the N-attack selectivity. This alkene-directed chemoselectivity is postulated to accelerate the protodeauration by an alkene coordination to gold. This new concept helps the design of new catalytic reactions.

Acknowledgements

We thank National Science Council, Taiwan, for financial support of this work.

Keywords: annulations \cdot chemoselectivity \cdot gold catalyst \cdot N-attack

How to cite: Angew. Chem. Int. Ed. **2015**, 54, 14924–14928 Angew. Chem. **2015**, 127, 15137–15141

- Selected reviews: a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocyclic and Natural Products (Eds.: A Padwa, W. H. Pearson), Wiley, New York, 2002;
 b) L. M. Stanley, M. P. Sibi, Chem. Rev. 2008, 108, 2887-2902;
 c) K. V. Gothelf, K. A. Jøgensen, Chem. Rev. 1998, 98, 863-910;
 d) F. Cardona, A. Goti, Angew. Chem. Int. Ed. 2005, 44, 7832-7835; Angew. Chem. 2005, 117, 8042-8045.
- [2] Reviews for gold-catalyzed cycloaddition reactions: see: a) A. S. K. Hashmi, *Chem. Rev.* 2007, 107, 3180-3211; b) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, *Chem.*

- Asian J. 2014, 9, 3066-3082; c) F. López, J. L. Mascareñas, Chem. Soc. Rev. 2014, 43, 2904-2915.
- [3] a) A. Vasella, Helv. Chim. Acta 1977, 60, 1273-1295; b) R. Huber, A. Vasella, Tetrahedron 1990, 46, 33-56.
- [4] Electron-withdrawing groups stabilize trisubstituted nitrones I" [Eq. (1)] for isolation, but their cycloadditions with alkenes were inactive. See: R. R. Singh, R.-S. Liu, Chem. Commun. 2014, 50, 15864 - 15866.
- [5] For gold-catalyzed intramolecular cyclizations of N-hydroxyamines with alkynes or allenes, see selected examples: a) H.-S. Yeom, E. So, S. Shin, Chem. Eur. J. 2011, 17, 1764-1767; b) Q. Zeng, L. Zhang, J. Yang, B. Xu, Y. Xiao, J. Zhang, Chem. Commun. 2014, 50, 4203-4206; c) C. Winter, N. Krause, Angew. Chem. Int. Ed. 2009, 48, 6339-6342; Angew. Chem. 2009, 121, 6457-6460; d) R. L. Lalonde, Z. J. Wang, M. Mba, A. D. Lackner, F. D. Toste, Angew. Chem. Int. Ed. 2010, 49, 598-601; Angew. Chem. 2010, 122, 608-611.
- [6] For gold-catalyzed intermolecular reactions of alkynes with Nhydroxy amines; see a) Y. Wang, L. Ye, L. Zhang, Chem. Commun. 2011, 47, 7815-7817; b) Y. Wang, L. Liu, L. Zhang, Chem. Sci. 2013, 4, 739-746.
- [7] CCDC 1415997 (3c) and 1415998 (8e) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- [8] M. E. Jung, G. Piizi, Chem. Rev. 2005, 105, 1735-1766.
- [9] a) A. Escribano-Cuesta, V. Lopez-Carrillo, D. Janssen, A. M. Echvarren, Chem. Eur. J. 2009, 15, 5646-5650; b) M. Schelwies, A. L. Dempwolff, F. Rominger, G. Helmchen, Angew. Chem. Int. Ed. 2007, 46, 5598-5601; Angew. Chem. 2007, 119, 5694-5697; c) E. Jiménez-Núñez, C. K. Claverie, C. Nieto-Oberhu-

- ber. A. M. Echvarren, Angew. Chem. Int. Ed. 2006, 45, 5452-5455; Angew. Chem. 2006, 118, 5578-5581.
- [10] a) C.-H. Chen, Y.-C. Tsai, R.-S. Liu, Angew. Chem. Int. Ed. 2013, 52, 4599-4603; Angew. Chem. 2013, 125, 4697-4701; b) S. A. Gawade, S. Bhunia, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 7835 - 7838; Angew. Chem. 2012, 124, 7955 - 7958.
- [11] a) E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350; b) C. Obradors, A. M. Echvarren, Acc. Chem. Res. **2014**, 47, 902 - 912.
- [12] a) A. Fürstner, F. Stelzer, H. Szillat, J. Am. Chem. Soc. 2001, 123, 11863-11869; b) A. Pradal, C.-M. Chao, P.Y. Toullec, V. Michelet, Beilstein J. Org. Chem. 2011, 7, 1021-1029; c) A. Das, S. Md. Abu Sohel, R.-S. Liu, Org. Biomol. Chem. 2010, 8, 960 - 979.
- [13] The mechanism of the formation of compound 11 c' is provided in the Supporting Information.
- [14] See Ref. [6c] and other examples: a) M. P. Sibi, M. Liu, Org. Lett. 2001, 3, 4181 – 4184; b) I. Ibrahem, R. Rios, J. Vesely, G.-L. Zhao, A. Córdova, Chem. Commun. 2007, 849-851.
- [15] Protodeauration reactions are greatly favorable for bulky and electron-rich phosphine-containing $LAu^{\scriptscriptstyle +}$ catalysts that can reduce formation of inactive di-gold alkenyl species. See: a) R. B. Ahmadi, P. Ghanbari, N. A. Rajabi, A. S. K. Hashmi, B. F. Yates, A. Afiafard, Organometallics 2015, 34, 3186-3195; b) W. Wang, G. B. Hammond, B. Xu, J. Am. Chem. Soc. 2012, 134, 5697-5705; c) D. Malhotra, M. S. Mashuta, G. B. Hammond, B. Xu, Angew. Chem. Int. Ed. 2014, 53, 4456-4459; Angew. Chem. 2014, 126, 4545-4548.

Received: August 25, 2015

Published online: October 12, 2015